Potato virus X amplicons in arabidopsis mediate genetic and epigenetic gene silencing.
نویسندگان
چکیده
Amplicon transgenes from potato virus X (PVX) are based on a modified version of the viral genome and are efficient activators of post-transcriptional gene silencing (PTGS). To determine whether PVX amplicons activate PTGS in Arabidopsis, we used constructs based on the genome of PVX carrying a green fluorescent protein (GFP) reporter gene. Our analysis of the transgene phenotype exploited previous observations indicating that PTGS is associated with short 25-nucleotide RNA species, transgene methylation, and homology-dependent virus resistance. We also used the ability of turnip mosaic virus to suppress gene silencing as a means of dissecting stages of the mechanism. The results showed that a PVX:GFP amplicon induces weak PTGS and that this PTGS was enhanced in the presence of a GFP reporter gene. Our interpretation of these data is that the PTGS induced by the amplicon was genetically determined and equivalent to the initiation stage of the PTGS mechanism. The PTGS induced by the combined amplicon and reporter gene was equivalent to the maintenance stage and was associated with an epigenetic conversion of the transgene. The distinction between genetic and epigenetic PTGS explains the well-characterized effects of transgene dosage on PTGS that have been previously interpreted in terms of RNA expression thresholds.
منابع مشابه
Transient expression of coding and non-coding regions of PVY confer resistance to virus infection
One of the most efficient mechanisms by which plants protect themselves from invading virusesis the specific RNA-dependent silencing pathway termed post-transcriptional gene silencing(PTGS). In this mechanism, resistance to a virus is engineered through the expression of asegment of the virus genomein transgenic plants. Potato VirusY (PVY) is one of the mostdamaging viruses of potato, infecting...
متن کاملConsistent gene silencing in transgenic plants expressing a replicating potato virus X RNA.
Tobacco plants were transformed with constructs in which the transgene was a cDNA of replicating potato virus X (PVX) RNA. The constructs, referred to here as amplicons, were the intact genome of PVX and PVX constructs modified to carry the beta-glucuronidase (GUS) reporter gene either as an additional gene or as a replacement for the coat protein gene (PVX/GUS/CP and PVX/GUS respectively). Tra...
متن کاملFunctional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing.
RNA silencing functions as an antiviral defense through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. In turn, plant viruses have evolved strategies to counteract this defense mechanism, including the expression of suppressors of RNA silencing. Potato virus X (PVX) does not systemically infect Arabidopsis thaliana Columbia-0, but is able to do so effectively in mutants lacking at...
متن کاملInduction of Resistance to Potato Virus Y (PVY) Using Hairpin Construct of Coat Protein
Potato virus Y (PVY) is one of the most damaging viruses of potato plants which infecting most cultivars and causing significant yield and economical losses. The application of the concept of pathogen derived resistance opened new horizons for the development of virus-resistant plants. This research was carried out to study RNA silencing to engineered potato plants that are resistant to potato ...
متن کاملVirus-induced silencing of FtsH gene in Nicotiana benthmiana causes a striking bleached leaf phenotype.
A recombinant Potato virus X (PVX) vector, pTXS.FtsH, harboring partial sequence of FtsH gene of Nicotiana benthamiana was constructed to silence the expression of endogenous FtsH homologous gene in N. benthamiana. Inoculation with in vitro runoff transcript of pTXS.FtsH to N. benthamiana plants allowed silencing of FtsH, causing striking bleaching of upper leaves reminiscent of var2 mutant phe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2000